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Diffuse intrinsic pontine glioma (DIPG) remains an incurable childhood
brain tumor for which novel therapeutic approaches are desperately
needed. Previous studies have shown that the menin inhibitor MI-2
exhibits promising activity in preclinical DIPG and adult glioma
models, although the mechanism underlying this activity is unknown.
Here, using an integrated approach, we show that MI-2 exerts its
antitumor activity in glioma largely independent of its ability to
target menin. Instead, we demonstrate that MI-2 activity in glioma is
mediated by disruption of cholesterol homeostasis, with suppression
of cholesterol synthesis and generation of the endogenous liver X
receptor ligand, 24,25-epoxycholesterol, resulting in cholesterol de-
pletion and cell death. Notably, this mechanism is responsible for MI-2
activity in both DIPG and adult glioma cells. Metabolomic and
biochemical analyses identify lanosterol synthase as the direct
molecular target of MI-2, revealing this metabolic enzyme as a vul-
nerability in glioma and further implicating cholesterol homeostasis
as an attractive pathway to target in this malignancy.
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Diffuse intrinsic pontine glioma (DIPG) is a uniformly fatal
brain tumor that remains the leading cause of brain tumor

death in children (1). No drugs have shown efficacy in this ma-
lignancy, despite >250 clinical trials. Recent exome-sequencing
studies have revealed oncogenic drivers in DIPG, most notably
somatic hotspot mutations in histone H3, leading to a lysine-27
to methionine substitution (H3K27M) in >80% of DIPG tumors
(2, 3). This discovery has facilitated the development of pre-
clinical animal models of DIPG (4–6); however, the H3K27M
mutation is not yet directly targetable, and thus there remains a
need to identify actionable vulnerabilities in these tumors.
To this end, we recently identified a small molecule, menin

inhibitor MI-2 (7), as a potential therapy for DIPG in preclinical
animal models of this malignancy (4). Subsequently, work by
others demonstrated promising antitumor effects of a structur-
ally similar analog (MI-2-2) (8) in patient-derived adult glioma
xenograft models (9, 10), pointing toward antiglioma activity,
which likely extends beyond DIPG tumors harboring the H3K27M
mutation and broadening the potential applicability of MI-2 and
its analogs.
MI-2 was developed as a menin inhibitor for use in leukemia,

acting by disrupting the interaction between menin and its
binding partner MLL1 (mixed lineage leukemia 1) (7), a histone-
methyltransferase that positively regulates gene expression by
establishing methylation at histone H3 lysine-4 (H3K4) (11). In
certain leukemias, MLL1 undergoes chromosomal rearrange-
ment, leading to generation of a fusion protein (MLL-fusion
leukemia), which drives oncogenic transcription (11). Importantly,
the N-terminal portion of MLL fusions interact with menin to re-
main chromatin-bound (12), and blocking this interface using MI-2,
or other menin inhibitors targeting the same interface (13), leads to

loss of oncogenic gene transcription, suppression of cell growth, and
cell differentiation (7).
How MI-2 exerts an antitumor effect in gliomas remains un-

known. Neither driver mutations in menin, nor MLL fusions occur
in adult glioma or DIPG (2, 3, 14), and the role of wild-type menin
in driving oncogenic gene transcription in different glioma subtypes
has not been systematically evaluated. Whether the mechanism of
MI-2 activity is shared in different molecularly distinct glioma
subtypes such as DIPG and adult glioma remains to be determined.
Here, we set out to characterize the mechanism of action of MI-2,
reasoning that this knowledge would reveal an important pathway
vulnerability in these tumors.

Results
Menin-Independent Activity of MI-2 in Glioma. Since the develop-
ment of MI-2, novel menin inhibitors have been developed
with increased potency at disrupting the menin–MLL interface
in biochemical and cellular assays (13) (SI Appendix, Fig.
S1A). To further explore the importance of the menin–MLL
interaction for glioma cell growth, we treated DIPG and adult
glioma patient-derived cell lines (DIPG-VI and GBM-0401,
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respectively) with MI-2 and a more potent, structurally distinct
inhibitor of the menin–MLL interface called MI-503 (13) (Fig.
1A and SI Appendix, Fig. S1A). We reasoned a more potent
menin–MLL inhibitor might exhibit increased activity in glioma
cells if this interaction were critical in this cellular context, and
could also represent a more powerful tool to probe downstream
mechanisms. To our surprise, MI-2 was up to 15-fold more po-
tent in glioma cell-lines than MI-503, and notably there was no
therapeutic window between normal neural progenitors (NPCs)
and tumor cell lines with MI-503 in dose-inhibition viability as-
says (Fig. 1A). The superior activity of MI-2 in glioma cells
compared with MI-503 led us to speculate that the mechanism of
action of MI-2 may be menin-independent in this setting.
To formally test this hypothesis, we generated multiple MEN1

knockout (KO) clones of glioma cells, using CRISPR/Cas9 (Fig.
1 B and C), and compared their sensitivity to MI-2 with their
MEN1 wild-type counterparts (Fig. 1D). Cells were stably
transduced with Cas9, followed by transduction with either
sgRNAs targeting the MEN1 gene or, as a control, targeting
Renilla luciferase (Fig. 1 B and C). Remarkably, MI-2 retained
nanomolar potency in MEN1 KO clones, with IC50 concentra-
tions comparable to those of wild-type clones (transduced with
sgRNA targeting Renilla luciferase) and parental cells (Fig. 1D),
supporting our hypothesis that menin engagement in this context
was not responsible for the highly potent activity of MI-2 in

glioma. Menin acts as an adaptor to recruit MLL1, an H3K4
methyltransferase, to chromatin (12, 15). Consistent with a
largely menin–MLL-independent function of MI-2, we observed
no significant difference in the quantity of H3K4me3 peptides by
mass spectrometry after treatment of glioma cells with MI-2 above
the IC50 concentration for DIPG-VI cells (SI Appendix, Fig. S1B).

Disruption of Cholesterol Homeostasis Underlies MI-2 Activity in
Glioma. To characterize the mechanism of action of MI-2 in an
unbiased fashion, we performed transcriptomic analysis of
DIPG-VI cells treated for 48 h with MI-2 or its inactive analog
MI-nc (7) (Fig. 2A). Unexpectedly, this analysis revealed signif-
icant changes in cholesterol homeostasis transcripts. Specifically,
the most highly up-regulated transcripts were SREBF1 (steroid
responsive binding factor 1), ABCG1 (ATP-binding cassette
subfamily G member 1), and ABCA1 (ATP-binding cassette
subfamily A member 1) (Fig. 2A). These genes are all canonical
targets of LXR (liver X receptor), a transcription factor that
promotes cholesterol export when activated by cholesterol me-
tabolites or synthetic compounds (16). This finding was of par-
ticular interest in light of recent work implicating synthetic LXR
agonists as therapeutic agents in glioma (17, 18). Notably, these
transcriptional changes were consistently observed in both DIPG
and adult glioma cell lines (Fig. 2A and SI Appendix, Fig. S2A),
and in contrast, NPCs, which were comparatively insensitive
to MI-2, exhibited a diminished response. We performed an
unbiased analysis of significantly up-regulated transcripts
(Ingenuity Pathway Analysis; P < 0.05), which also identified
LXR activation as the top enriched canonical pathway (Fig.
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Fig. 1. (A) Dose inhibition curves of adult glioma (GBM-0401) and DIPG
(DIPG-VI) cell-lines and human NPCs treated with MI-2 and MI-503. IC50

values and World Health Organization (WHO) classification of glioma cell
lines shown. IDH, isocitrate dehydrogenase. (B) Western blot of CRISPR/Cas9
gene-edited MEN1-KO GBM-0401 cell lines and controls. KO 1–4 generated
with sgRNA targeting MEN1 exon 4. KO 2–2, 2–3, 2–4 generated with sgRNA
targeting MEN1 exon 7. WT1–WT4 generated with control sgRNA targeting
nonhuman sequence (Renilla luciferase). Parental cell line (PAR) not trans-
duced with sgRNA. (C) Western blot of CRISPR/Cas9 gene-edited MEN1-KO
DIPG-VI cell line and controls. KO 1–3 generated with sgRNA targetingMEN1
exon 4. WT3 and WT4 were generated with control sgRNA targeting non-
human sequence (Renilla luciferase gene). PAR not transduced with sgRNA.
(D) Dose-inhibition curves of MEN1 wild-type cells (parental cells and cells
transduced with sgRNA targeting Renilla luciferase) and KO cells (transduced
with MEN1 targeted sgRNA) treated with MI-2 for 7 d.
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Fig. 2. (A, Left) Volcano plot of genome-wide RNA-Seq data, with choles-
terol homeostasis transcripts highlighted in red. (A, Right) qPCR validation of
most significant up-regulated transcripts in DIPG-VI, GBM-0401, and NPCs.
(B) Ingenuity pathway analysis of significantly up-regulated genes (P < 0.05)
in DIPG-VI cells treated with 0.4 μM MI-2 compared with 0.4 μM MI-nc
(control). (C) Relative free cholesterol levels measured by LC-MS in cells
treated with 0.4 μM MI-2 compared with 0.4 μM MI-nc (n = 3). (D) Relative
cell viability of cells treated with MI-2 with/without addition of exogenous
cholesterol (n = 4 per condition). ns, not significant; **P < 0.01; ***P < 0.001.
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2B). To confirm this was a menin-independent transcriptional
response, we treated MEN1 KO cells with MI-2 and observed
robust up-regulation of LXR targets (SI Appendix, Fig. S2B). In
addition, we did not observe this transcriptional response after
MI-503 treatment (SI Appendix, Fig. S2C), further suggesting
this response did not occur because of menin engagement.
Given the prominent LXR signature induced by MI-2 and the

well-characterized function of LXR in promoting cholesterol
export; we hypothesized that MI-2 would deplete cholesterol in
glioma cells. Indeed, using liquid chromatography mass spec-
trometry (LC-MS), we observed significantly reduced free cho-
lesterol in both DIPG-VI and GBM-0401 lines 48 h after MI-2
treatment (Fig. 2C). Importantly, provision of exogeneous cho-
lesterol alone was sufficient to completely rescue cell death in-
duced by MI-2 in both DIPG-VI and GBM-0401 cell lines,
confirming cholesterol depletion was the dominant mechanism
by which MI-2 was acting in this context (Fig. 2D and SI Ap-
pendix, Fig. S3A). MI-2-induced cell death in MEN1 KO cells
was also rescued by provision of exogenous cholesterol, strongly
supporting the same mechanism of MI-2 activity in the presence
and absence of menin (SI Appendix, Fig. S3B). Notably, we did
not observe any rescue with MI-503-treated cells (SI Appendix,
Fig. S3B), further supporting a distinct mechanism of activity
with MI-2.

MI-2 Induces Prominent Accumulation of 24,25 Epoxycholesterol and
Shunt Pathway Metabolites. In the physiological regulation of
cholesterol homeostasis, LXR is activated by binding of its nat-
ural ligands, which are oxysterols; oxidized products of choles-
terol or cholesterol precursors that act to negatively regulate
cholesterol levels (16, 19). To explore whether MI-2 promotes
the generation or accumulation of oxysterols, we used LC-MS to
measure a panel of oxysterols after 48 h of MI-2 treatment.
Remarkably, we observed a striking and relatively selective ele-
vation (up to 100-fold) in 24,25-epoxycholesterol levels (Fig. 3A
and SI Appendix, Fig. S4A). 24,25-epoxycholesterol is an oxy-
sterol synthesized in a pathway parallel to cholesterol known as
the shunt pathway (Fig. 3B), and is one of the most potent known
endogenous LXR ligands (19, 20). Shunt pathway generation of
24,25-epoxycholesterol leads to cholesterol depletion via LXR-
driven cholesterol export (19), but also via LXR-independent
effects on cholesterol synthesis (21–23). To determine the ex-
tent to which LXR activation (by 24,25-epoxycholesterol) con-
tributes to MI-2 induced cell death, we added an LXR antagonist
(GSK-2033) (24) to MI-2-treated cells to block LXR activation,
and were able to rescue cell death by ∼30%, consistent with a
partially LXR-dependent mechanism of MI-2 (SI Appendix,
Fig. S4B). Interestingly, we observed accumulation of 24,25-
epoxycholesterol in NPCs (SI Appendix, Fig. S4A), which were
relatively insensitive to MI-2 (IC50 > 1.5 μM), suggesting the
mechanism of resistance in this setting may be downstream of
24,25-epoxycholesterol generation. Consistent with this, NPCs
showed decreased LXR activation (Fig. 2A) and less cholesterol
depletion compared with DIPG and adult glioma cell-lines
(Fig. 2C).
We reasoned that accumulation of 24,25-epoxycholesterol

suggests MI-2 may be either inhibiting catabolism of this me-
tabolite or increasing its generation by promoting shunt pathway
activity. To explore which one of these mechanisms may be at
play, we first determined whether more proximal shunt pathway
metabolites were elevated (Fig. 3B). We measured levels of 2,3-
oxidosqualene and 2,3,22,23-dioxidosqualene by LC-MS and
found concomitant accumulation in the presence of MI-2 (Fig.
3C), confirming an increase in shunt pathway intermediates.

MI-2 Is a Direct Inhibitor of the Lanosterol Synthase. Lanosterol
synthase (LSS, also known as oxidosqualene cyclase) is a mon-
otopic membrane protein that sits downstream of squalene in

the cholesterol biosynthetic pathway (Fig. 3B) and catalyzes the
conversion of 2,3-oxidosqualene to lanosterol, the first sterol to be
formed in the pathway (SI Appendix, Fig. S4C) (25). LSS is also
capable of catalyzing the conversion of 2,3,22,23-dioxidosqualene
to 24,25-epoxylanosterol (Fig. 3B), and partial inhibition of LSS
using small molecules disproportionately blocks conversion of 2,3-
oxidosqualene to lanosterol, while permitting 24,25-epoxylanosterol
synthesis, because of the increased affinity of LSS for 2,3,22,23-
dioxidosqualene as a substrate (23, 26). Under these conditions, 2,3-
oxidosqualene accumulates and is metabolized preferentially via the
shunt pathway, eventually leading to 24,25-epoxycholesterol accu-
mulation and LXR activation, with concurrent reduction of
cholesterol synthesis resulting from decreased conversion of
2,3-oxidosqualene to cholesterol (23, 26).
We were intrigued that MI-2-induced metabolite changes phe-

nocopied those seen with partial LSS inhibition, so we tested the
sensitivity of several DIPG and adult glioma cell lines to the LSS
inhibitor, RO-48-8071 (27). We observed potent activity in our
glioma lines (with NPCs being more resistant), mirroring our
observations with MI-2 (SI Appendix, Fig. S5A). Indeed, there was
a very strong correlation between MI-2 and LSS inhibitor sensi-
tivity (RO-48-8071) in glioma cell lines (R2 = 0.91; P = 0.0003; Fig.
4A). We also found that RO-48-8071 induced up-regulation of
LXR targets, and its effects on glioma cell viability could be

B C
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DIPG-VI GBM-0401

vehicle
MI-2

DIPG-VI

MI-nc
MI-2

ndnd ndnd

Fig. 3. (A) Relative levels of cellular oxysterol species as measured by LC-MS in
DIPG-VI cells treated with vehicle (DMSO) or MI-2 for 48 h (n = 3). (B) Simplified
schematic of cholesterol synthesis pathway and shunt pathway (dotted arrows
denote multiple enzymatic steps). (C) Quantification of proximal shunt path-
way species 2,3-oxidosqualene, and 2,3,22,23-dioxidosqualene by LC-MS after
48 h of treatment with 0.4 μMMI-nc (control) or MI-2 (n = 3). nd, not detected;
**P < 0.01; ***P < 0.001.
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rescued by exogenous cholesterol (SI Appendix, Fig. S5B), con-
sistent with a shared mechanism of action of RO-48-8071
and MI-2.
Finally, to test whether lanosterol synthase was the direct enzy-

matic target of MI-2, we evaluated the ability of MI-2 to inhibit
conversion of 2,3-oxidosqualene to lanosterol by lanosterol synthase
in an in vitro biochemical NMR assay (28) (Fig. 4B). We observed
potent inhibition of lanosterol synthase by MI-2 with an IC50 of
110 nM and, furthermore, MI-2-2 (the structural analog of MI-2,
SI Appendix, Fig. S1A) also showed potent activity, with an IC50 of

100 nM. In contrast, we observed minimal activity with the inactive
compound MI-nc, (IC50 of 32 μM), and no activity with the struc-
turally distinct menin inhibitor, MI-503 (Fig. 4B).

Discussion
In this report, we characterize the mechanism of action of MI-2, a
drug previously identified in a small molecule screen, as having a
therapeutic effect in preclinical DIPG and glioma models. Elegant
studies have demonstrated MI-2 is a menin inhibitor (7, 8), and
in MLL-fusion leukemia cells, interruption of the menin–MLL
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8071), with linear regression shown. (B) NMR biochemical assay for enzymatic conversion of 2,3-oxidosqualene to lanosterol by human lanosterol synthase
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Fig. 5. Model showing effects of MI-2 on sterol synthesis. (Left) In the absence of MI-2, there is basal but low flux through the shunt pathway. (Right) MI-2
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interaction has a well-established mechanistic link to suppression
of leukemia growth (7, 8, 12, 13, 29). In the context of glioma,
however, although menin is expressed, our data show it is not a
major target responsible for the antitumor effects observed
after MI-2 treatment. Employing a genetic approach, we gen-
erated multiple menin knockout glioma cells and additionally
demonstrated that these cells showed retained sensitivity to MI-
2, pointing toward a distinct molecular target in this context. In
further support of this conclusion, we showed that a more potent
menin inhibitor exhibited relatively weak activity in glioma cells.
Using a combination of transcriptional, metabolomic, and bio-

chemical analyses, we identify lanosterol synthase as the key mo-
lecular target that MI-2 directly inhibits to exert its effect in glioma,
resulting in loss of cholesterol homeostasis and cell death (Fig. 5).
Importantly, we confirm this activity is responsible for induction of
cell death by complete rescue of the effect via provision of ex-
ogenous cholesterol. Notably, this potent activity is specific to
MI-2 and not a characteristic of the newer-generation menin
inhibitor, MI-503. Our work, and other recent studies (30, 31),
underscore the importance of target deconvolution (32), the
process of identifying the relevant molecular target of a small
molecule, to reveal insights into the biology of a particular
phenotype and provide a starting point for chemical optimization
efforts and development of biomarker strategies (32).
Metabolic reprogramming is now well-established as a hall-

mark of malignancy, which can generate therapeutic vulnera-
bilities (33, 34), and indeed, we observed MI-2 was more potent
in glioma cells compared with normal neural progenitor cells.
This was likely, in part, a result of a more dramatic up-regulation
of LXR targets in glioma cells after MI-2 treatment compared
with normal cells. Of note, normal neural progenitors robustly
generated 24,25-epoxycholesterol after MI-2 treatment, sug-
gesting there may be distinct transcriptional regulation of the
LXR pathway in normal and glioma cells. Given MI-2 blocks
lanosterol synthesis, we speculate that the activity of enzymes
distal to lanosterol in the mevalonate pathway, which has been
shown to vary greatly in distinct neural populations (35), may also
contribute to the differential response to LSS inhibition between
normal and glioma cells. In addition, the elevated cholesterol
demand, to support increased cell proliferation and oncogenic
signaling in malignant cells (36–38), may also be an important
factor in the increased potency of MI-2 in glioma cells observed.
Alterations in cholesterol metabolism can result as a direct

consequence of oncogenic mutations; for example, p53 mutations
result in mevalonate pathway activation (39, 40), and mutations in
tyrosine kinase receptors, such as epidermal growth receptor, pro-
mote increased capacity for cholesterol uptake (17). Both DIPG
and adult gliomas harbor multiple mutations, and further work is
needed to characterize how their effects interact to alter cholesterol
metabolism. We speculate that cholesterol addiction may be a
general feature of malignant gliomas, particularly important in the
brain microenvironment, where cholesterol cannot be derived from
the circulation because of the presence of the blood–brain barrier.
Our identification of lanosterol synthase as the target of MI-2

suggests modulating the activity of other enzymes (or regulatory

proteins) in the cholesterol biosynthetic pathway may have
therapeutic utility in glioma. In support of this approach, a brain-
penetrant LXR agonist showed impressive activity in preclinical
glioma models (18), providing evidence that depleting choles-
terol, even without directly affecting synthesis, may be effective.
The most well-characterized enzyme in cholesterol metabolism is
HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), the tar-
get of statins, although there is some debate as to the efficacy of
targeting HMGCR in preclinical glioma models (18, 41). It has
been suggested that statins’ ability to deplete tumor cell cho-
lesterol may be impaired by elevated low-density lipoprotein
receptor expression on glioma cells (18) or homeostatic up-
regulation of low-density lipoprotein receptor that follows sta-
tin treatment (42). This may be particularly relevant to glioma
cells in the intracranial environment, where scavenging from
astrocyte-produced cholesterol has been proposed to be a major
source of cholesterol (18, 35, 43).
Cellular cholesterol levels are highly regulated, requiring the

coordination of synthesis, efflux, and influx mechanisms that
provide multiple potential avenues for intervention in glioma,
which will require systematic evaluation. The antitumor efficacy
when targeting different nodes within the cholesterol metabolic
pathway may depend on the nature of feedback responses eli-
cited and whether multiple processes are inhibited simulta-
neously (e.g., synthesis and transport). LSS as a therapeutic
target is unique and potentially advantageous in this regard.
Partial inhibition of LSS promotes flux through the shunt path-
way, which results in the combinatorial effect of increasing 24,25
epoxycholesterol, which activates LXR-mediated cholesterol
export while concurrently reducing postoxidosqualene choles-
terol synthesis. This cholesterol depletion mechanism represents
a double hit, and we speculate this may render compensatory
mechanisms to maintain cholesterol by tumor cells less effective.

Materials and Methods
Complete details and descriptions of the materials used and methods for cell
culture and proliferation assays; virus generation and cell transduction;
CRISPR gene editing; metabolite quantification by LC-MS; NMR biochemical
assays; quantitative PCR, RNA sequencing, and analysis; histone PTM quan-
tification; and statistical analyses are provided in SI Appendix, SI Materials
and Methods.
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